LIST OF ILLUSTRATIONS

I	igure		Page
	1.1.	Two shock wave stress-distance profiles in iron for times t ₂ and t ₃ where t ₂ < t ₃	5
	2.1.	Lagrangian distance-time diagram of shock wave propagation in iron	15
	2.2.	Reflected light plate slap experiment (a) and corresponding streak camera record (b)	18
	2.3.	Streak camera record	20
	3.1.	Flier plate system for plate slap experiments	29
	3.2.	Diagram showing relation of experimental target, light source, and camera for transmission experiments	35
	4.1.	Elastic precursor stress as a function of sample thickness	41
	4.2.	Free surface velocity of iron after plastic I shock arrival	44
	4.3.	Stress behind the plastic I shock in iron as a function of sample thickness	45
	4.4.	Stress jump across the plastic I shock as a function of sample thickness	46
	4.5.	Shock wave arrival times at free surfaces	50
	4.6.	Corrected Lagrangian h-t diagram for beginning of the plastic II front	52
	4.7.	Iron Hugoniot states	54
	5.1.	Transformation stress for iron under compression at various temperatures	60
	5.2.	Body centered lattice	65
	5.3.	Shear mechanism for body-centered-cubic to h hexagonal-close-packed transformation	67

viii.

			ix.
Figure		Page	
5.4.	Subdivision of a single grain by martensitic plates. A and B are first and second generation plates, respectively	70	
5.5.	Shear mechanism in body-centered-cubic iron to obtain hexagonal symmetry along a twin plane	75	
5.6.	Spherical embryos in stable phase 1. Curve A is		
	for the stable phase 1 field with $G_2-G_1 = G_{21} > 0$. Curve B is for low pressure sufficient to make		
	the phase 2 field stable with $G_{21}(n_1^*) < 0$.		
	Curve C is for higher pressure, P2, for which		
	$G_{21}(n_2^*) < G_{21}(n_1^*) < 0. \dots$	76	
5.7.	Amount of epsilon phase as a function of stress in excess of 130 kbar	86	
6.1.	Isotherm used to define $f^{eq} = (v_A - v_1^T) / (v_1^T - v_2^T)$ for state A where $0 \le f^{eq} \le 1$ and		
Capital	$f^{eq} = 1$ for state B where $V_B \leq V_2^T$	93	
6.2.	Temperature independent steady plastic II shock fronts using Eq. (6.4) and $U_2-u_1 = 3.36$ mm/µsec.	98	
6.3.	Reflected plastic I wave reduces the stress in and behind the plastic II shock front to a value below the transformation stress. This process leaves a zone, h_5-h_3 , in iron of varying	45.W 	
	hardness	100	
6.4.	Stress-particle velocity states at the impact boundary when an iron sample is impacted by an aluminum plate	102	
A.1.	Difference between Gibbs energies of alpha and epsilon iron along the mixed phase Hugoniot	119	
B.1.	Schematic of calibration technique for the streak camera	122	
C.1.	Envelope of parallel lines between A and B make up the streak camera trace	132	

)

18